News

28.02.2016 - 16:54

Q.com article in the „Physik in unserer Zeit“

A recent open-access article by research partners from the BMBF Q.com Research Network project entitled "Sichere Kommunikation per Quantenrepeater" is published in "Physik in unserer Zeit", which reports on the current state and the main challenges in this field.

Weiterlesen...

12.12.2015 - 12:00

3rd OCL-TP Workshop

On 10-11th December, the 3rd International Workshop between the "Optical Communication Lab" and the Department "Technological Physics" took place under framework of long-term cooperation agreement between the Israel Institute of Technology and the University of Kassel.

Weiterlesen...

23.07.2015 - 16:54

OCL-TP Workshop

On 22-23rd July, the 2nd International Workshop between the "Optical Communication Lab" and the Department "Technological Physics" took place under framework of long-term cooperation agreement between the Israel Institute of Technology and the University of Kassel.

Weiterlesen...

Diamond-based Platforms for Long-term Growth and Investigations of Neurons

The recent development of neurosciences creates an ever increasing demand to the properties and functionalities of materials and devices used for the study of fully organised neuronal networks and their activity. They should provide good and fast attachment of the neurons without the application of extracellular matrix proteins and should not degrade with the time upon contact with the biological system thus allowing long-term measurements. 

Diamond in the form of thin films is a perspective candidate for such applications due to its outstanding mechanical, optical, electrical, chemical, and bio-properties. This research proposal aims at the preparation of platforms based on ultrananocrystalline diamond (UNCD) films for the long-term growth of functional  neuronal networks and their electrophysiological investigations. The UNCD films which are composed of diamond nanocrystallites (ca. 5 nm) embedded in amorphous carbon matrix combine the extreme diamond properties with a rather smooth topography and include nanostructures which will enhance the fast and good adhesion of the neurons. During this work multilayers of ultrananocrystalline diamond and metal structures will be deposited on glass substrates with a transparency allowing the microscopical observation of the neuron positioned on the platforms from the backside combined with, for example, fluorescence imaging from the top. As a next step, from these layers the metal tracks for recording the neuron activity and the UNCD for the contact pads for the neurons will be structured applying lithography and etching. Since the surface plays an extremely important role in the interactions with cells various modifications of the UNCD surface by plasma or photochemical processes will be applied, followed by patterning of the surface termination. 

For the investigation of the biocompatibility and functionality of the layer systems two types of neurons will be used, namely pacemaker neurons of the cockroach Rhypharobia maderae and olfactory receptor neurons from the tobacco hornworm Manduca sexta which serve as models for the investigation of the spontaneous electrical activity and the directional growth of developing neuronal networks, respectively, both aiming at long-term studies, not achieved till now with other materials.

© INA 2017. Version: 20.09.2017 - Impressum | Sitemap | RSS-Feed